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Chapter 1

Metric Spaces

We study various abstract notions of distance.

Definition

A metric space is a set X of objects (called points) equipped with a metric or
distance function d : X ×X → R, which assigns to each pair x, y of points of
X a real number d(x, y) ≥ 0, the distance from x to y, so that

a. d(x, x) = 0 for any x ∈ X and

b. if x 6= y then d(x, y) > 0 and

c. (symmetry) d(x, y) = d(y, x) for any x, y ∈ X and

d. (the triangle inequality)

d(x, z) ≤ d(x, y) + d(y, z)

for any points x, y, z ∈ X. Roughly: it is never shorter to go from x to z
via y than to go “directly” from x to z.

The real number line R is a metric space, with metric d(x, y) = |x− y|
for any two real numbers x, y ∈ R.

Euclidean space Rn is a metric space, with the Euclidean metric d(x, y) =
|x− y| for any two points x, y ∈ Rn.

If X is a metric space, with metric dX , and S ⊂ X is any subset, then
S is a metric space with dS(x, y) = dX(x, y), i.e. restricting the metric
on X to points from S, the induced metric. For instance, the sphere in
Euclidean space is a metric space, with this restricted metric.
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Euclidean space Rn is also a metric space with various other metrics,
for example the taxi-cab metric

d(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn| .

This measures the distance we travel in a journey from x to y along
a path made of line segments parallel to the coordinate axes, just as
a taxi-cab in Manhattan can only travel along the streets, which run
north-south and east-west.

Euclidean space admits another usual metric: the sup norm metric

d(x, y) = max |x1 − y1| , |x2 − y2| , . . . , |xn − yn|.

Take any collection of dots called vertices, connected up by paths called
edges.

The resulting drawing is a graph. The graph is connected if we can move
from any vertex to any other along a sequence of edges. The distance

between two vertices is the minimum number of edges we must traverse
to travel from one vertex to the other.

The integrable functions on a measureable set A ⊂ Rn form a metric
space under

d(f, g) =
∫
A

|f − g|.

If X and Y are metric spaces, then X×Y is a metric space with metrics

d1 ((x0, y0) , (x1, y1)) = dX (x0, x1) + dY (y0, y1) ,

or
d2 ((x0, y0) , (x1, y1)) =

√
dX (x0, x1)2 + dY (y0, y1)2

,

or
d3 ((x0, y0) , (x1, y1)) = max dX (x0, x1) , dY (y0, y1),

among many other possibilities.
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On any set X, the standard discrete metric is defined by

d(x, y) =
{

0, if x = y,

1, if x 6= y.

The disjoint union X t Y of two sets X and Y is the the set of pairs of
the form (1, x) for x in X or (2, y) for y in Y . In this way, we force each
element x of X to be represented by a different point (1, x) of X t Y
than any point of Y . For example, R tR consists of two “copies” of the
real number line. Nonetheless, we usual denote the point (1, x) just as
x and the point (2, y) just as y respectively, if that doesn’t cause any
confusion. Given metrics on X and Y , defined a metric on X t Y by
d(x, y) = 1 for x in X and y in Y , and with points of X having distances
given by the metric on X and with points of Y having distances given
by the metric on Y . So R t R is a pair of lines, but each point of one
line is exactly one unit from each point of the other line: something I
can’t draw.

If x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are two sequences in a metric
space X, we can define a distance between sequences as

d(x, y) = sup
i
dX (xi, yi) .

The set Z of all bounded sequences in X is a metric space. (Unbounded
sequences can have infinite distance.)

1.1 Suppose that A is a nonempty set and n ≥ 1 is an integer. Let X ..=
A×A× · · · ×A = An. So elements x of X look like x = (x1, x2, . . . , xn) with
each of x1, x2, . . . , xn drawn from A. The Hamming distance d(x, y) is

d(x, y) = # { i | xi 6= yi } .

Prove that d is a metric.

1.2 Give an example of a metric space X which does not arise as a subspace
(with induced metric) of Euclidean space of any dimension.

Convergence

A sequence x1, x2, · · · ∈ X in a metric space converges to a point x ∈ X, denoted
xi → x, if the distances d (x1, x) , d (x2, x) , . . . go to zero.

1.3 Suppose that a sequence x1, x2, · · · ∈ X converges to a point p ∈ X and
also converges to a point q ∈ X. Prove that p = q.
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1.4 Prove that a sequence in Rn converges in the taxi-cab metric just when it
converges in the Euclidean metric.

1.5 When does a sequence converge in a discrete metric?

1.6 Prove that a point x ∈ X is an accumulation point of a set S ⊂ X just
when there is a sequence in S converging to x.

A metric is discrete if any convergent sequence is constant after finitely
many steps.

1.7 A metric space is ε-separated if any distinct points are of distance at least
ε. Give an example of a discrete metric space which is not ε-separated for any
ε.

Open and closed sets

The ball (or open ball) of radius r ≥ 0 about a point x ∈ X of a metric space is

Br (x,X) = { y ∈ X | d(x, y) < r } ,

while the closed ball of radius r ≥ 0 about a point x ∈ X of a metric space is

B̄r (x,X) = { y ∈ X | d(x, y) ≤ r } .

1.8 What are the balls of the taxi-cab metric? The sup norm metric? The
metric on a graph?

An open set in a metric space X is a union of open balls.

1.9 Prove that

a. The empty set is open in any metric space.

b. Any metric space is an open subset of itself.

c. The union of any collection of open sets in a metric space is an open set.

d. The intersection of any finite collection of open sets in a metric space is
an open set.

1.10 What are the open sets in a discrete metric space?

A set is closed if its complement is open.

1.11 Prove that

a. The empty set is closed in any metric space.

b. Any metric space is a closed subset of itself.
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c. The intersection of any collection of closed sets in a metric space is a
closed set.

d. The union of any finite collection of closed sets in a metric space is a
closed set.

e. A set consisting of a single point in a metric space is closed.

1.12 What are the closed sets in a discrete metric space?

The interior of a set S ⊂ X is the union of all open sets lying in S, and
hence is itself open. The closure S̄ of a set S ⊂ X is the intersection of all
closed sets containing it.

1.13 An accumulation point of a subset S ⊂ X of a metric space is a point
x ∈ X so that every ball containing x of positive radius intersects S. Prove
that S̄ is the set of accumulation points of S.

1.14 What are the accumulation points of a set in a discrete metric space?

1.15 Give an example of a metric space in which the closure of an open about
some point of some radius r is not the closed ball of radius r about that point.

Relatively open sets

A set S ⊂ Y ⊂ X is relatively open if it is open as a subset of Y in the induced
metric, and we similarly define relatively closed subsets of subsets.

Lemma 1.1. A set S ⊂ Y ⊂ X is relatively open just when S = Y ∩U for some

open subset U ⊂ X. A set S ⊂ Y ⊂ X is relatively closed just when S = Y ∩C
for some closed subset C ⊂ X.

Proof. The balls of X intersect Y in the balls of Y ; picture each ball of Y
extending out to a ball in X. The open sets of Y are unions of those balls of
Y ; just extend each ball. The proof for closed sets follows easily as they are
complements of open sets.

Completeness

A Cauchy sequence in a metric space X is a sequence x1, x2, · · · ∈ X so that
the distances d (xi, xj) get, and stay, as small as we like, if we go far enough
down the sequence, i.e. if i and j are both large enough.

1.16 Prove that every convergent sequence is Cauchy.

A metric space is complete if every Cauchy sequence is convergent.

1.17 Prove that Euclidean space is complete.
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The rational numbers form an incomplete metric space, in the induced
metric from the real number line, because we can make a sequence of
rational approximations to any irrational number, so a Cauchy sequence
of rational numbers which does not converge inside the space of rational
numbers.

The integrable functions on a measurable set A ⊂ Rn form a complete
metric space, as proven in analysis textbooks.

1.18 Prove that a subset S of a complete metric space X is complete in the
induced metric just when it is a closed subset of X.

1.19 Prove that Rn is complete in the taxi-cab metric.

Compactness

A metric space is compact if every infinite sequence of points of the metric space
has a convergent subsequence. A subset of a metric space is compact if it is
a compact metric space in the induced metric. For example, the empty set is
compact in any metric space.

1.20 Prove that any finite set of points in any metric space is compact.

1.21 Prove that a finite union of compact sets is compact, and that the inter-
section of any collection of compact sets is compact.

A metric space (or subset of a metric space) is bounded if it lies in a ball.
The diameter is the supremum of distances between points of the metric space,
and is finite just when the space is bounded. An open cover of a set in a metric
space is a collection of open sets whose union contains the set. A subcover of
an open cover is a collection of open sets from the cover, which still manage to
cover the set.

Theorem 1.2. A metric space is compact just when every open cover of the

metric space has a finite subcover. Every compact metric space is complete.

Proof. Suppose that every open cover has a finite subcover. Take a sequence
x1, x2, . . . of points in our metric space. We need to prove there is a convergent
subsequence. We only need prove that some point x has infinitely many elements
of our sequence arbitrarily close to it. Suppose not. Then for each point x, we
can find an open set Ux containing x and only containing finitely many points
of our sequence. Take a finite subcover. Then there are only finitely many
points in our sequence, so it contains a constant subsequence.

Suppose that our metric space is compact. First, we prove that it is complete.
Every Cauchy sequence x1, x2, . . . has a convergent subsequence, say with a
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limit x. Along the subsequence, the points get and stay close to x. But along
the whole sequence, the points stay close to one another, since it is Cauchy.
Therefore the sequence converges.

Next, we prove that, for any ε > 0, X is covered by finitely many balls
of radius ε. (See the next section for more about this property, called total

boundedness.) Suppose not. Then we take any point x1, and let x2 be a point
of distance at least ε from x1, and x3 point of distance at least ε from both of
x1, x2, and so on. There is no convergent subsequence, a contradiction.

Take an open cover, and let’s look for a finite subcover. Pick a radius ε > 0
and cover by finitely many balls of radius ε. If we can cover each of these balls
by finitely many open sets from our open cover, then we throw these together to
get a finite cover. So one of our balls admits no finite subcover by our open sets.
Let x1 be the center of that ball. Repeat by induction for smaller values of ε at
each step, to produce a collection of points x1, x2, . . . so that d (xj , xj+1) < εj ,
with ε1, ε2, · · · → 0. So the ball centers form an infinite sequence; replace by a
subsequence to ensure convergence to some point x. Take an open set from our
open cover containing x. All but finitely many of our points x1, x2, . . . lie in that
open set, and so do the balls of radii εi about them. But that one open set from
our open cover is already a finite subcover of that εi-ball, a contradiction.

1.22 Which discrete metric spaces are compact? Which are bounded?

Totally bounded spaces

Try to approximate a metric space by a discrete metric space: a ε-net is a set
of points in a metric space so that every point lies within distance ε from a
point of that set.

A metric space is totally bounded if, for any ε > 0, the metric space admits a
finite open cover by balls of radius ε; in other words, there is a finite ε-net for
every ε > 0. The proof of theorem 1.2 on the facing page proves that compact
metric spaces are totally bounded.

1.23 Which discrete metric spaces are totally bounded?

1.24 In Rn with the standard discrete metric, are bounded sets totally bounded?
the taxi-cab metric? the Euclidean metric? the sup norm metric?

Theorem 1.3 (Heine–Borel). In a metric space, a set is compact just when it

is complete and totally bounded.
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Proof. Compact sets are complete and totally bounded. Take a complete and
totally bounded set. Take any open cover of the set. Pick a number ε1 > 0.
By total boundedness, we can cover our set in finitely many balls of radius
ε. Suppose that each of these balls admits a finite cover by our open sets.
Then throw those finitely many covers together to cover the whole set, a finite
subcover. So we can suppose that there is one of these balls, say Bε1x1, which
is not covered by any finite number of our open sets. Cover that ball by finitely
many balls of a much smaller radius ε2, and conclude by the same reasoning
that there is a ball, say Bε2x2, which is not covered by any finite number of
our open sets, with d (x1, x2) < ε1. Inductively, generate a Cauchy sequence
x1, x2, . . .. Replace with a subsequence to ensure convergence, say to some
point x. But x is covered by one of our open sets, so therefore all points close
enough to x are as well. So one of the balls Bεjxj lies in that open set, a
contradiction.

A metric space is locally compact if every point lies in the interior of a
compact set, and proper if every closed ball is compact. Proper spaces are
locally compact.

1.25 Give an example of an improper locally compact metric space.

Compactness radius

The compactness radius of a point x ∈ X in a metric space X is the supremum
radius of a compact closed ball around x, zero if there no such ball, infinite if
balls of all radii about x are compact.

1.26 Find the compactness radius of a point (x, y) ∈ X = R2 − {(0, 0)} with
metric induced from the Euclidean metric.

1.27 Prove that if a closed ball lies in a compact closed ball, then it is compact.

1.28 Prove that the compactness radius satisfies r(y) + d(x, y) ≥ r(x) for any
two points x and y.

1.29 Prove that the compactness radius is finite at one point just when it is
finite at all points. Prove that the compactness radius is positive everywhere
just when the metric is locally compact. Prove that the compactness radius is
infinite somewhere, and therefore everywhere, just when the metric is proper.

1.30 Prove that the compactness radius is continuous if finite.

1.31∗ Prove that every connected, locally compact metric space is a countable
union of compact sets.
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Density

A subset A ⊂ X of a metric space is dense in another subset B if the closure
of A contains B, and everywhere dense if A is dense in X. A metric space is
separable if it contains a dense sequence of points.

The rational numbers are dense in the real numbers.

For each rational number q ∈ Q, take the set Uq ..= {x ∈ R | x 6= q }.
So the various Uq ⊂ R are dense open sets. Their intersection⋂

q∈Q
Uq ⊂ R

is precisely the set of irrational numbers, not open, but still dense.
Roughly speaking, if we only pull out a single rational at each step,
we still have a lot left over after an infinite sequence of steps.

A set A ⊂ X in a metric space is nowhere dense if, for any open set U ⊂ X,
A ∩ U is not dense in U .

The integers are nowhere dense in the real numbers.

The Baire category theorem

A meager set is a subset S ⊂ X of a metric space, which can somehow be
written as

S = C1 ∪ C2 ∪ . . .

as the union of a sequence of nowhere dense closed sets.

For each rational number q ∈ Q, take the set { q } ⊂ R. The various
{ q } ⊂ R are nowhere dense closed sets. Their union, Q, is dense, and
not closed, but is still not “very large”: it has dense complement.

A comeager set is a subset A ⊂ X of a metric space, which can somehow
be written as

A = U1 ∩ U2 ∩ . . .

as the intersection of a sequence of dense open sets.

1.32 Prove that a subset of a metric space is meager just when its complement
is comeager.
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Theorem 1.4 (Baire category theorem). In any complete metric space, every

meager set has dense complement. In other words, in any complete metric space,

every comeager set is dense.

Proof. Take a comeager set

A = U1 ∩ U2 ∩ . . .

Since U1 is open, it contains a ball. Since U2 is open and dense, it contains a
ball nested inside the previous ball, and so on. The Cauchy sequence of centers
of the balls x1, x2, . . . converges, say to x ∈ X. Since the balls are nested, the
point x is inside all of them. So the intersection is not empty.

Pick a point x ∈ X. Since U1 is open and dense, it contains balls of radii as
small as we like and as close as we like to x. For any one of these balls, we start
the process of the previous paragraph, generating a point of the intersection
inside that ball. Changing the choice of ball, we can make those points approach
x.

Any countable subset S ⊂ R of real numbers has dense complement.
Proof: The complete metric space X = R contains the nowhere dense
closed sets {x } for each point x of X. Apply the Baire category theorem
to any sequence of these.

Take a sequence of polynomial functions p1(x, y), p2(x, y), . . . in two
variables x, y, each function nonzero somewhere. Associate to each
polynomial pj(x, y) its set of zeroes Vj ..= { (x, y) | pj(x, y) = 0 }. The
complete metric space X = R2 contains the nowhere dense closed sets
Vj . By the Baire category theorem, the union

S ..= V1 ∪ V2 ∪ . . .

has dense complement: you can avoid satisfying all of the polynomial
equations pj(x, y) = 0 by slight perturbation of any point (x, y) ∈ R2.

1.33 Suppose that we pick a metric on the set X ⊂ R of all rational numbers,
perhaps not the usual metric. Suppose that the open sets of this metric are the
usual open sets, as from the usual metric. Prove that X is not complete.

1.34 Suppose that X is a metric space with no isolated points. Prove that X
is incomplete or uncountable.



Chapter 2

Maps of Metric Spaces

We prove some big theorems about continuous maps between metric spaces.

Continuity

A map f : X → Y between metric spaces is continuous if the inverse image of
any open set is an open set. For clarity we often denote the metric of a metric
space X as dX rather than d.

2.1 Prove that a map f : X → Y is continuous just when, for every point
x0 ∈ X, and for every number ε > 0, there is a number δ > 0 so that, for any
point x1 ∈ X, if dX (x0, x1) < δ then dY (f (x0) , f (x1)) < ε.

2.2 Suppose that X is a discrete metric space. What are all continuous maps
X → R? What are all continuous maps R → X?

2.3 Let X = Rn with the taxi-cab metric and Y = Rn with the sup norm
metric and let f : X → Y be the map f(x) = x. Is f continuous? Is f−1

continuous?

2.4 Suppose thatX is a metric space. Equip X×X with any one of the metrics
described on page 2 for products of metric spaces. Prove that the metric itself
dX : X ×X → R is a continuous map.

2.5 For any continuous map f : X → Y of metric spaces, prove that the image
f(S) of any compact set S ⊂ X is compact.

2.6 Prove that every continuous function on any compact metric space achieves
a maximum value and a minimum value.

2.7 Prove that every continuous map from a compact metric space to a metric
space has compact image.

Uniform continuity

LetX and Y be metric spaces. A sequence of maps f1, f2, . . . : X → Y converges

pointwise to a map f : X → Y if, for any point x, fi(x)→ f(x).

11
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On [0, 1], the functions fj(x) = xj converge pointwise
to

f(x) =
{

1, if x = 1,
0, otherwise.

So a sequence of continuous functions can converge point-
wise to a discontinuous function. Picture how it happens:
if we sit at any one point x < 1, we watch while the func-
tions x, x2, . . . get smaller and smaller, going to zero. But
for larger x values, it takes much longer for this too hap-
pen; we have to get further down to sequence keep all
of the numbers x, x2, . . . smaller than ε.

The uniform distance between two maps f, g : X → Y is

d(f, g) = sup
x∈X

dY (f(x), g(x)) .

Warning: if X is not compact, and Y is not bounded, there might be infinite
uniform distance between two maps.

The uniform distance between y = x and y = sin x
(where X = Y = R) is infinite because the linear
function grows arbitrarily large, while the sine
function stays bounded.

The sequence x, x2, x3, . . . on X = [0, 1] converges point-
wise to

f(x) =
{

1, if x = 1,
0, otherwise,

but not uniformly. Any particular function xk will be
almost one unit away from zero for x close enough to 1, so
the uniform distance is d

(
xk, f

)
= 1 for all k = 1, 2, . . ..

A sequence of maps f1, f2, . . . : X → Y converges uniformly to a map f : X → Y
if the uniform distance from fi to f converges to zero. A sequence of maps
f1, f2, . . . : X → Y is uniformly Cauchy if the uniform distances between fi
and fj converge to zero as i, j →∞.
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Take a little bump

and slide it along

as a sequence of functions f1, f2, . . ., so that the bump flies off to infinity.
If you sit at any one point long enough, you watch the bump fly past,
and then the functions settle down toward zero. Every function in this
sequence has the same height, and so the distance to the zero function
always stays the same. So the uniform distance from the zero function is
always the same positive number: f1, f2, . . . does not converge uniformly.
If you fix any finite interval and watch the functions f1, f2, . . . along
that interval, they converge rapidly to 0 uniformly along that interval:
uniform convergence on compact sets.

A sequence of maps f1, f2, . . . : X → Y is locally uniformly Cauchy if every
point of X lies in an open set in which the uniform distances between fi and
fj converge to zero as i, j →∞.

The functions fj : R → R, fj(x) = xj/j! are locally uniformly Cauchy,
but not uniformly Cauchy.

2.8 Draw pictures to explain why the functions fj : R → R, fj(x) = 2 arctan(jx)/π
are pointwise Cauchy, but are not locally uniformly Cauchy in any open set
containing the origin.

Lemma 2.1. Any locally uniformly Cauchy sequence of maps f1, f2, . . . : X →
Y between metric spaces which converges pointwise converges to a continuous

map. In particular, if Y is a complete metric space, then any locally uniformly

Cauchy sequence of maps f1, f2, . . . : X → Y converges to a continuous map.

Proof. Take a locally uniformly Cauchy sequence of maps f1, f2, . . . : X → Y .
Cover X by open sets in which the convergence is uniformly Cauchy. It suffices
to show that the restrictions of these maps to those open sets converge to a
continuous map. So we can assume that the convergence is uniformly Cauchy.

If Y is complete, then for each point x ∈ X, the values f1(x), f2(x), · · · ∈ Y
form a Cauchy sequence, so converge, say to some point f(x) ∈ Y . So we can
assume pointwise convergence.
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Pick some point x0 ∈ X and some ε > 0. Let y0 = f (x0) and let yi =
fi (x0). If we take i large enough we can get d (fi, f) as small as we like, i.e.
d (fi(x), f(x)) is small for all x. Once we fix that value of i, for every x close
enough to x0, d (fi(x), y) is as small as we like. So

d (y0, f (x)) ≤ d (y0, yi) + d (yi, fi (x)) + d (fi (x) , f (x))

is as small as we like, so f is continuous.

Let F be the set of continuous maps f : X → Y between two metric spaces
X and Y . We try to turn F into a metric space by taking the uniform metric

to be given by the uniform distance. If F is compact, or F is bounded, then F
is a metric space. More generally, pick a particular continuous map f : X → Y
as “origin”; the set Ff of continuous maps g of uniformly bounded distance
from f , i.e. with finite value for d(f, g), is a metric space.

If f is bounded, then Ff is the set of all bounded continuous maps
X → Y .

If f(x) = ex is the exponential function (and again X = Y = R), then
Ff is the set of functions ex+b(x) where b(x) is any bounded continuous
function.

Corollary 2.2. Pick a continuous map f : X → Y from a metric space X to

a complete metric space Y . The set of all continuous maps of bounded uniform

metric distance from f is a complete metric space in the uniform metric.

Equicontinuity

A set F of continuous maps X → Y is equicontinuous if for every x ∈ X and
every ε > 0, x lies in an open set Ux ⊂ X such that for any y ∈ Ux and f ∈ F ,
d(f(x), f(y)) < ε; in other words, if we move x only a little bit, to a nearby
point y, all of the functions in F change only a little.

2.9 Is the sequence x, x2, x3, . . . equicontinuous on [0, 1]? On (0, 1)?

2.10 If X and Y are metric spaces, and X is discrete, which sets F of maps
X → Y are equicontinuous?

A set F of continuous maps is pointwise bounded or pointwise totally bounded
or pointwise relatively compact if for every x ∈ X, the set { f(x) | f ∈ F } ⊂ Y
is bounded or totally bounded or relatively compact.

Theorem 2.3 (Arzelá–Ascoli I). Let X be a compact metric space and Y a

metric space. Take a set F of continuous maps X → Y . Then the following

properties of F are equivalent:



Equicontinuity 15

a. The set F is equicontinuous and pointwise relatively compact,

b. Every infinite sequence of maps f1, f2, · · · ∈ F has a convergent subse-

quence.

Proof. Pick any ε > 0. Since F is equicontinuous, every point x ∈ X lies in an
open set Ux ⊂ X in which

d(f(s), f(t)) < ε

4 ,

for all s, t ∈ Ux and f ∈ F . Since X is compact, we can choose a finite subcover
Ux1 , Ux2 , . . . , Uxn

. Because F is pointwise relatively compact, the set of points
f (x1) , f (x2) , . . . , f (xn) is a relatively compact subset of Y . So we can pick
some points y1, y2, . . . , ym ∈ Y so that every point f (xi) lies within distance
1
4ε from one of these yj . Let F ′ be the set of all maps

φ : { x1, x2, . . . , xn } → { y1, y2, . . . , ym } ,

a “discrete approximation” of F . For each φ ∈ F ′, let

Fφ =
{
f ∈ F

∣∣∣ d (f (xi) , φ (xi)) <
ε

4 , i = 1, 2, . . . , n
}
.

Then F is the union of all sets Fφ, for all maps φ ∈ F ′.
First we want to prove that each Fφ has diameter at most ε in the uniform

metric, so it essentially like a small ball around the point φ in our discrete
approximation. If f, g ∈ Fφ, then d(f, φ) < ε

4 and d(g, φ) < ε
4 on x1, x2, . . . , xn.

So then d(f, g) < ε
2 on x1, x2, . . . , xn. But then for any x ∈ X, x ∈ Uxi for

some i so

d(f(x), g(x)) ≤ d (f(x), f (xi)) + d (f (xi) , g (xi)) + d (g (xi) , g(x)) ,
≤ ε.

So effectively we have found a “discrete approximation” F ′ to F , and F looks
like a collection of small balls around those discrete points.

Picking one map f from every nonempty Fφ, for every φ ∈ F ′, we obtain
a finite set of maps Fε so that every map in F lies within distance ε of one
of them, an ε-net inside F . In particular, F is totally bounded, so lies inside
some space Ff of maps of uniformly bounded distance from a single map f . If
we replace F by its closure in Ff , we still have equicontinuity and pointwise
relative compactness, so we can assume that F is closed and totally bounded.

Take a sequence ε1, ε2, · · · → 0 and for each εi cover X by all open balls
of radius εi, and then take a finite subcover. The center points of the balls in
those finite subcovers, all put together, form a dense countable subset of X, say
x1, x2, . . .. For any sequence f1, f2, · · · ∈ F , take a subsequence whose values
converge at x1, and out of that a further subsequence whose values converge
at x2, and so on. Take the first entry from the n-th subsequence whose value
at x1, x2, . . . , xn is within εn of the limit value. So we have a subsequence con-
verging on a dense subset. By equicontinuity, the same subsequence converges
near each point of the dense subset, i.e. everywhere.
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Theorem 2.4 (Arzelá–Ascoli II). Suppose that X and Y are metric spaces and

that X is proper. Then every equicontinuous and pointwise relatively compact

sequence of maps f1, f2, . . . : X → Y has a subsequence converging uniformly

on compact sets of X to a continuous map f : X → Y .

Proof. Let B̄k be the ball in X of radius k about some point x0 ∈ X. By
properness, these balls are compact. Pick some sequence of positive numbers
ε1, ε2 → 0. By theorem 2.3 on page 14, on B̄1 some subsequence of these fn
converge to some map f . Pick one element of that subsequence which lies within
distance ε1 of the limit, uniformly on B̄1, and call it g1. By theorem 2.3 on
page 14, on B̄1 some subsequence of that subsequence converges to some map,
necessarily agreeing on B̄1 with the map f we already defined. Pick one element
of that subsubsequence which lies within distance ε2 of the limit, uniformly on
B̄2,and call it g2. Repeat inductively.

Dilation

A map f : X → Y between metric spaces is distance preserving if dY (y0, y1) =
dX (x0, x1) whenever y0 = f (x0) and y1 = f (x1), for any points x0, x1 ∈ X. An
isometry is a distance preserving bijection; its inverse is then also an isometry.
A subset S ⊂ X of a metric space is dense if the closure of S is X.

2.11 Prove that the rational numbers are dense in the real numbers with
Euclidean metric.

2.12 Suppose that S ⊂ X and T ⊂ Y are subsets of complete metric spaces
and that S ⊂ X is dense. Prove that every distance preserving map S → T of
the induced metrics extends uniquely to a distance preserving map X → Y .

2.13 Suppose that X and Y are metric spaces, x0 a point of X and y0 a point
of Y , and that, for every real number r, Br (x0, X) is isometric to Br (y0, Y ).
Is X isometric to Y ?

The dilation of a map f : X → Y between metric spaces is

sup
x0 6=x1

dY (f (x0) , f (x1))
dX (x0, x1)

(which can be ∞). A Lipschitz map is a map of finite dilation.

2.14 Which are Lipschitz: |x|, |x|1/2, x1+ε sin(1/x)?

2.15 Fix a point x0 ∈ X in a metric space and let r(x) = d (x0, x). Prove that
r has unit dilation.

2.16∗ Prove the wedding blanket theorem: any map f : X → X on a compact
metric space so that d(f(x), f(y)) ≥ d(x, y) is an isometry.
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2.17 A map has locally bounded dilation (also called a locally Lipschitz map) if
its restriction to any bounded set has finite dilation. Prove that maps of locally
bounded dilation are continuous.

Proposition 2.5. A map S → Y of locally bounded dilation from a dense

subset S ⊂ X of a metric space to a complete metric space Y extends uniquely

to a map X → Y of locally bounded dilation, with the same local dilation bound.

Proof. It is enough to prove the result locally. If x ∈ X is the limit of a sequence
s1, s2, · · · ∈ S, then f (si) is a Cauchy sequence, since f stretches distances by
a bounded factor at most. Let f(x) = lim f (sj). If we have another sequence
t1, t2, · · · ∈ S with limit x, then si and tj get and stay both close to x, for large
enough i and j, so f (si) is close to f (tj), since again f stretches distances
by at most a bounded factor. Therefore f(x) is well defined. Again, since f
stretches distances by at most a bounded factor on S, taking limits gives the
same factor, the same dilation.

2.18 Suppose thatX ⊂ Rp and Y ⊂ Rq are open subsets and that f : X → Y is
a continuously differentiable map. Prove that the dilation of f is the supremum
of ‖f ′(x)‖ for x ∈ X.

Completion

Theorem 2.6. Every metric space X is a dense subset of a complete metric

space X̄. The metric space X̄ is uniquely determined up to isometry.

Proof. Uniqueness: By density, if X ⊂ Y and X ⊂ Z is dense in two metric
spaces, the idenity map X → X uniquely extends to a continuous map Y → Z
of dilation at most 1 and in the same way to a continuous map Z → Y of
dilation at most 1, by proposition 2.5, hence both are isometries.

Existence: Intuitively, we picture that there are some “missing” points to
X, which we should fill in to get Cauchy sequences to converge.

If X is a disk punctured at a point:

we want X̄ to include that point. We can “feel” that the point is “missing”
from X, because there are Cauchy sequences heading inward, with no
limit in X:
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Declare two Cauchy sequences x1, x2, . . . and y1, y2, . . . of points xi, yj ∈ X
to be equivalent if the distances d (xi, yj) → 0 as i, j → ∞. Let X̄ be the
set of equivalence classes. The “distance” between two Cauchy sequences x =
(x1, x2, . . . ) and y = (y1, y2, . . . ) of points of X is

d̄ (x, y) = lim
m,n→∞

sup
i>m,j>n

d (xi, yj) .

This is not a metric. Clearly our “distance” between Cauchy sequences depends
only on their equivalence class, so d̄ is defined on pairs of points of X̄. If
d̄ (x, y) = 0 then clearly the equivalence classes can only be represented by
equivalent Cauchy sequences, so are equal. Similarly, the triangle inequality
just pulls out of the limit and supremum to give a triangle inequality on X̄. Map
X → X̄ by taking each point x of X to the equivalence class of the constant
sequence x, x, x, . . . in X̄.

We need to prove that X̄ is complete. We take a Cauchy sequence x1, x2, . . .
in X̄. Each xi is the equivalence class of a Cauchy sequence xi1, xi2, . . . in X.
As we make i, j → ∞, d̄ (xi, xj) → 0. This means that d (xik, xjl) → 0 as we
make i, j, k, l →∞. In particular, if we let yi ..= xii, then x1, x2, . . . converges
to y in X̄.

Contraction maps

A contraction is a map f : X → X of dilation less than 1. Given a map
f : X → X on a metric space, let f◦0 : X → X be the identity map, and
inductively let f◦(n+1) = f ◦ f◦n. The map is a pinch if the sum λ1 + λ2 + . . .
of the dilations λn of the compositions f◦n is finite.

Every map with dilation λ has λn ≤ λn, so contractions pinch.

Theorem 2.7 (Contraction mapping theorem). Every pinch of a complete

metric space has a unique fixed point. If x0 is any point, and f a pinch,

with dilation sum at most c, let D ..= d(x0, f(x0)). Then the fixed point is at

most D(1 + λ1 + λ2 + . . . ) away from x0.
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Proof. Let

x1 = f (x0) ,
x2 = f (x1) ,

...

We want to prove that this sequence has a fixed point as limit. Imagine for the
moment that we know the sequence is Cauchy. It converges, say to some point
x, so

x = lim
i→∞

f (xi) .

The function f is continuous, so

f

(
lim
j→∞

xj

)
= lim
j→∞

f (xj) .

Therefore f(x) = x, a fixed point.
So we only need to prove that x0, x1, x2, . . . is a Cauchy sequence. Let D

be the distance from x0 to x1. How fast do the distances shrink? The sum of
positive terms λ1 + λ2 + . . . is finite, so λi → 0 as i→∞. If m is the smaller
of k, `, and n = |k − `|,

d(xk, x`) ≤ λmd(x0, xn),
≤ λm(d(x0, x1) + d(x1, x2) + · · ·+ d(xn−1, xn)),
≤ λm(1 + λ1 + λ2 + · · ·+ λn−1)D.

As m→∞, this vanishes, as λm → 0. So this sequence is Cauchy. The distance
from x0 to the fixed point is bounded, by taking the limit.

2.19 Take the set X of all continuous maps f : S1 → S1 with the uniform
metric. It is clear by looking at the trigonometric functions and their inverse
functions that f has a lift (also called its angle function), a continuous function
f̂ : R → R so that f(eiθ) = eif̂(θ). The degree of f is

1
2π (f̂(2π)− f̂(0)).

Approximate f̂ by a “linear” map as follows. Take slope m equal to the degree
of f . The intercept β0 is the average of f̂(θ)−mθ:

β0 = 1
2π

∫ 2π

0
f̂(θ) dθ − πm.

Associate to any continuous map f : S1 → S1 and number 0 ≤ t ≤ 1 the map
Ftf whose lift is

θ 7→ (1− t)f̂(θ) + t (mθ + β0) .
Prove that on continuous maps of the circle of a given degree, the map Ft is a
contraction map if t > 0 and is continuous in t.
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A family of metric spaces is a surjective continuous map f : X → Y of metric
spaces. The stalks of the map are the sets f−1(y), which we denote as Xy,
for all y ∈ Y . A section is a continuous map x : Y → X picking out a point
x(y) ∈ Xy in each stalk, i.e. so that f ◦ x is the identity map. Similarly, a local

section is a continuous map x : open ⊂ Y → X picking out a point x(y) ∈ Xy,
i.e. so that f ◦ x is the identity map. A pinch on a family of metric spaces
f : X → Y is a continuous map g : X → X which preserves each stalk and
defines a pinch on each stalk, with dilation of the composition g◦n on each stalk
Xy bounded by some value λn(y) depending continuously on y.

Theorem 2.8. Suppose that g : X → X is a pinch of a family X → Y of metric

spaces. Suppose that each fiber Xy is a complete metric space. Suppose that each

point of Y is in the domain of a local section. Then the fixed point x(y) ∈ Xy

of g is a section.

Proof. Start with a local section s0, and apply the pinch g to it, say sj+1 = g◦sj .
Let D = d (s0, s1). Then

d (s1, s2) ≤ λ1 d (s0, s1) = λ1D,

and inductively
d (sj , sj+1) ≤ λjD.

By the triangle inequality, if i < j then

d (si, sj) ≤ d (si, si+1) + d (si+1, si+2) + · · ·+ d (sj−1, sj) ,
≤ (λi + λi+1 + · · ·+ λj)D,
→ 0

as i, j →∞. Therefore s0, s1, . . . is a uniformly Cauchy sequence, so is pointwise
convergent, say to x, and by lemma 2.1 on page 13, x is continuous. The limit
does not depend on the choice of local section s0, as any other local section t0
leads to a sequence so that d (si, ti) < λid (s0, t0)→ 0. By the same argument,
for any two local sections s0, t0, perhaps defined on different overlapping open
sets, the map x = lim sj = lim tj is the same on the overlap. Therefore
x : Y → X is defined on Y .
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Existence and uniqueness of flow lines of vector fields

Theorem 2.9. Every continuously differentiable vector field on any manifold

has a twice continuously differentiable flow line through every point, defined on

some open time interval containing zero.

As a starting point, consider the simpler linear problem:

Theorem 2.10. Take a linear system of ordinary differential equations

dx

dt
= A(t)x(t),

with t ∈ I, I an interval of R, x ∈ Rn and A : I → Rn×n a matrix with entries

Ck functions, some k ≥ 0. Then for every point t0 of I and vector x0 ∈ Rn
there is unique C1 solution x(t) of the system with x (t0) = x0, and this solution

is in fact Ck+1.

Proof. Suppose for the moment that I is a compact interval and that t0 = 0
lies in I. Let Z be the set of all continuous maps x : I → Rn so that x (0) = x0.
By lemma 2.2 on page 14, Z is a complete metric space under the uniform
distance. Let P : Z → Z, denoted x 7→ Px, be

Px(t) = x0 +
∫ t

0
A(s)x(s) ds.

Let λ be the absolute value of the largest eigenvalue of A(t) for any t in I.
Check that Px ∈ Z:

|Px(t)− x0| ≤
∫ t

0
|A(s)x(s)| ds,

≤ λtdZ(x, 0).

To bound the dilation of P :

|Px(t)− Py(t)| ≤
∫ t

0
|A(s)(x(s)− y(s))| ds,

≤ λdZ(x, y)t.

Composing: ∣∣P ◦2x(t)− P ◦2y(t)
∣∣ ≤ ∫ t

0
|a(s)(Px(s)− Py(s))| ds,

≤ λ
∫ t

0
|Px(s)− Py(s)| ds,

≤ λ2dZ(x, y)
∫ t

0
s ds,

≤ (λt)2

2 dZ(x, y).



22 Maps of Metric Spaces

By induction, the dilation of P ◦n is at most (λT )n /n!. The sum of the dilations
of the compositions P ◦n is at most eλT <∞. Therefore P has a fixed point, a
continuous map x : I → Rn so that

x(t) = x0 +
∫ t

0
a(s)x(s) ds.

Since x is continuous, and a is continuous, the right hand side is continuously
differentiable, so x is continuously differentiable. Differentiate: x is a solution.
Shift the t variable so that we don’t have to assume that t0 = 0: there is a
unique solution x(t) with given initial value x (t0) = x0 defined on any compact
interval containing t0. If there is a flow line defined on a larger time interval,
then its restriction to the same time interval is also a fixed point of P , so agrees
with x. Given a noncompact interval I, for each point t1 of I, take a compact
interval J inside I containing t and define x(t) near t1 to be the solution on
J .

In order to prove theorem 2.9 on the preceding page, we temporarily invent
some disposable notation concerning vector fields, which will give us a more
precise statement. Since every manifold is locally diffeomorphic to Rn, it is
enough to prove our result on an open set U ⊂ Rn. Suppose that X : U → Rn
is a vector field on an open set U ⊂ Rn. Distance is never larger than speed
times time; let’s write this out in some notation. For each point x0 ∈ U let

vX (x0, r) = max
‖x0−x‖≤r

|X(x)|

be the largest speed of the vector field in each ball. If we travel along a flow line
of X starting at a point x at time 0, we can’t reach further than some distance,
say r, from x at time t, so r ≤ |t|vX (x0, r). So to get out of the ball of radius
r about x0, you need to travel for a time t so that

|t| > r

vX (x0, r)
.

Let
TX (x0) = sup

r

r

vX (x0, r)
,

a naive estimate for how long a flow line should survive, at least. Note that
TX (x0) might be infinite. Let IX (x0) = (−T, T ) where T = TX (x0).

Theorem 2.11. Take a vector field X on any open set U ⊂ Rn. Suppose

that X has locally bounded dilation. Then X has a flow line x : I → B, with

arbitrary starting point x(0) = x0 ∈ U , where B = Brx0 is the largest ball

about x0 lying in U and I = IX (x0) in our notation above.

Proof. Pick some radius r so that X is defined on B̄rx0 and let

T = max
ρ≤r

ρ

vX (x0, ρ) .



Existence and uniqueness of flow lines of vector fields 23

Let I = [−T, T ]. Let Z be the set of all continuous maps x : I → B̄rx0 so that
x(0) = x0. By lemma 2.2 on page 14, Z is a complete metric space under the
uniform distance. Define a map P : Z → Z, which we denote by x 7→ Px, by

Px(t) = x0 +
∫ t

0
X(x(s)) ds.

Check that Px ∈ Z:

|Px(t)− x0| ≤
∫ t

0
|X(x(s))| ds,

≤
∫ t

0
vX (x0, r) ds,

≤ TvX (x0, r)
≤ r.

Let λ be the dilation of X on B̄x0r. To bound the dilation of P :

|Px(t)− Py(t)| ≤
∫ t

0
|X(x(s))−X(y(s))| ds,

≤ λ
∫ t

0
|x(s)− y(s)| ds,

≤ λdZ(x, y)t.

Composing: ∣∣P ◦2x(t)− P ◦2y(t)
∣∣ ≤ ∫ t

0
|X(Px(s))−X(Py(s))| ds,

≤ λ
∫ t

0
|Px(s)− Py(s)| ds,

≤ λ2dZ(x, y)
∫ t

0
s ds,

≤ (λt)2

2 dZ(x, y).

By induction, the dilation of P ◦n is at most (λT )n /n!. The sum of the dilations
of the compositions P ◦n is at most eλT <∞. Therefore P has a fixed point, a
continuous map x : I → B̄rx0 so that

x(t) = x0 +
∫ t

0
X(x(s)) ds.

Since x is continuous, and X is continuous, the right hand side is continuously
differentiable, so x is continuously differentiable. Differentiate: x is a flow line.
If there is a flow line defined on a larger time interval, then its restriction to
the same time interval is also a fixed point of P , so agrees with x. Therefore x
extends uniquely to IX (x0).



24 Maps of Metric Spaces

2.20 For which real numbers a does the vector field X(x) = |x|1+a sin(1/x)
have locally bounded dilation (i.e. finite dilation on every ball)?

Theorem 2.12. If a vector field on a manifold is Ck, and the manifold is Ck+1,

then every flow line of the vector field is Ck+1.

Proof. A local question, so we can assume that our manifold is an open set in
Rn. The result is clear from

x(t) =
∫ t

0
X(x(s)) ds.

Recall that a flow of a vector field X on a manifold M is a continuous map
F : U →M where U ⊂ R ×M is an open set, and F (t, x) is denoted Ft(x), so
that, for any fixed x, Ft(x) is a flow line of X, defined on the largest possible
connected interval of R containing 0, and F0(x) = x.

Theorem 2.13. Every vector field of locally bounded dilation on any open

subset of Rn has a unique flow, continuously differentiable in time and of

bounded dilation in space.

Proof. Take a vector field X on an open set U ⊂ Rn. Take a compact set
C ⊂ U and a positive number D > 0. Let C0 ⊂ C be the set of points of C of
distance at least D from the complement of C. The reader can easily check that
if D is small enough then C0 is not empty. Let v = maxx∈C |X(x)|. Starting
inside C0, we can’t get outside of C in time less than T = D/v along any flow
line. Let Z be the set of all continuous maps f : [−T, T ] × C0 → C, denoted
ft(x) = f(t, x), so that f0(x) = x for all x ∈ C0 and

|ft(x)− fs(x)| ≤ v |t− s| ,

for any x ∈ C0 and times −T ≤ s, t ≤ T . Equip Z with the uniform distance,
so that Z is a complete metric space. Let

Pft(x) ..= x+
∫ t

0
X (fs(x)) ds.

As in the proof of theorem 2.11 on page 22, we check that P is a contraction
mapping on Z, so there is a unique fixed point f and t 7→ ft(x) is a flow line.
The flow lines move at speed no more than v, so ft(x) has bounded dilation as
a function of x. By uniqueness of flow lines, if we pick a larger compact set C
and a smaller D > 0, we extend f to be defined on a larger set. The extension
of f over the union of all such sets is a flow.

2.21 Prove that the flow f of a vector field of locally bounded dilation satisfies
ft2(ft1(x)) = ft1+t2(x) wherever these are defined.

2.22 Suppose that X is a C1 vector field. Prove that its flow is C1.
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Theorem 2.14. Any Ck vector field has Ck flow.

Proof. For k = 1, see problem 2.22, so suppose k ≥ 2. If X is a Ck vector field
on an open set U ⊂ Rn, define a vector field Y of locally bounded dilation on
U × Rn by

Y (x, y) = (X(x), X ′(x)y) .

By induction, Y has a Ck−1 flow, Ft(x, y). Let f0
t (x) = x and F 0

t (x, y) = (x, y).
Let f j+1 = Pf j and F j+1 = PF j as in the proof of theorem 2.13 on the
preceding page. Our operator P preserves the condition that

F jt (x, y) =
(
f jt (x), ∂f

j

∂x
y

)
.

As F j converges to the flow F of Y , we find that ∂fj

∂x converges to a function
which gives a derivative ∂f

∂x to f :

Ft(x, y) =
(
ft(x), ∂f

∂x
y

)
.

2.23 Prove Picard’s theorem (theorem 2.9 on page 21), noting that we defined
the term flow a little differently there.

Length

A path in a metric space is a continuous map x : [a, b]→ X. Picture a path in
the plane. For any choice of points a ≤ t0 ≤ t1 ≤ · · · ≤ tn = b, for any integer
n, we associate a sum: ∑

i

d (x (ti+1) , x (ti)) .

If we were in Euclidean space, this would give the length of the “broken straight
line” path from x(a) to x(b) passing through x (t1) , x (t2) , . . . , x (tn).

The length of a path x : [a, b]→ X is the supremum of the values of this sum,
over all choices of n and of the numbers t1, t2, . . . , tn; we use this same definition
in any metric space, not just Euclidean space. A path is rectifiable if it has
finite length.
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2.24 Prove that the path

x(t) =
(
t, t cos

( π
2t

))
, t > 0

and x(0) = (0, 0) is continuous but not rectifiable. Hint: it passes points at
times t = 1/2k whose distances sum to an infinite sum.

Lemma 2.15. In Euclidean space, the length of a piecewise continuously dif-

ferentiable path x : [a, b]→ Rn is∫ b

a

‖x′(t)‖ dt.

Proof. For any h small enough, the “remainder”

Q(t, h) = x(t+ h)− x(t)− x′(t)h

satisfies
‖Q(t, h)‖ < ε|h|

for all t with a ≤ t ≤ b. Our integral is a limit of Riemann sums, so is closely
approximated by a Riemann sum∑

i

‖x′ (tj)‖ ∆tj ,

for some a ≤ t0 < t1 < · · · < tn = b with differences ∆tj = tj+1 − tj all smaller
than some number h which we can keep as small as we like. But then our
integral is ∑

i

‖x′ (tj)‖ ∆tj =
∑
i

‖x (tj+1)− x (tj) +Q (t,∆tj)‖ ,

=
∑
i

‖x (tj+1)− x (tj)‖+ error

where the error is smaller than ε(b− a).

2.25 Give an example of a function which is not rectifiable as a map f : (0, 1)→
R.

2.26 Give an example of a continuous function f : [0, 1]→ R whose graph has
infinite length.

A piece of a path x : [a, b]→ X is a path x|[s,t] : [s, t]→ X for some s, t with
a ≤ s < t ≤ b. Suppose that x : [a, b]→ X is a rectifiable path in a metric space
X with length `. The arc length function of x is the function s : [a, b]→ [0, `]
defined by letting s(t) be the length of x|[a,t].

Lemma 2.16. The arc length function of any rectifiable path is continuous.
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Proof. Let L(s, t) be the length of p|[s,t]. Clearly L(s, t) increases with t, de-
creases with s, and

L(s, u) + L(u, t) = L(s, t).

Letting u→ t we see that, in order to prove that L is continuous at (s, t) it is
enough to prove that L is continuous at (t, t). Suppose that L (u, t) doesn’t go
to zero as u→ t; it decreases, so must be bounded below by a positive number.
Take an increasing sequence ui → t, with u0 = s, then

L(s, t) =
∑

L (ui, ui+1) =∞

a contradiction.

Lemma 2.17. Any path of zero length is constant.

Proof. If not, say x0 = x (t0) 6= x1 = x (t1), then by the triangle inequality the
length of x is never less than d (x0, x1) > 0.

A path x : [a, b] → X is parameterised by arc length if the length of every
piece x|[s,t] of the path is t − s. A reparameterisation of a rectifiable path
p : [a, b]→ X is a rectifiable path q so that there is a rectifiable increasing map
h : [a, b]→ [p, q] with p(t) = q(h(t)).

Theorem 2.18. Every rectifiable path in any metric space has a unit speed

reparameterisation (also called an arc length reparameterisation), unique up

reparameterizing by a shift t 7→ t+ constant.

Proof. Take a rectifiable path p : [a, b] → X, say with length `. Let s be the
arclength function We will prove that there is a unique reparameterisation

[0, `]

[a, b] X

q

p

s

We want to define q(s(t)) = p(t), and we need to prove that this is well defined.
We finally need to prove that q is continuous and has unit speed, i.e. is distance
preserving.

Suppose that s (t0) = s (t1). We want to prove that p (t0) = p (t1). We can
suppose that t0 < t1. So the length of p|[t0,t1] = s (t1) − s (t0) = 0, and so
p (t0) = p (t1). Therefore q is well defined. If s→ s0 then the length of p|[s0,s]
goes to zero, so the end points collide, so q is continuous. By definition, q is
unit speed.

Lemma 2.19. Any continuous strictly increasing map h : [a, b] → [p, q] of

intervals of the real line so that h(a) = p and h(b) = q has a continuous

inverse.
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Proof. Being strictly increasing means that if x < y then h(x) < h(y) so h is
injective. By the intermediate value theorem, h is surjective. Therefore h is
a bijection, so has an inverse h−1. Any closed subset C ⊂ [a, b] is compact,
so has compact image h(C) ⊂ [p, q], so closed. The preimage of the closed set
C ⊂ [a, b] via h−1 is the image via h, so is closed. Therefore the preimage of
any open set via h−1 is open. Therefore h−1 is continuous.

Lemma 2.20. For an arclength reparameterisation p = q ◦ h of a path p, the
map h is continuous with a continuous inverse just when every piece of the

path p has positive length.

Proof. Let s(t) be the arc length function, i.e. the length of p|[a,t]. Clearly s
is strictly increasing, a map s : [a, b]→ [0, `] where ` is the length of the path
f . By continuity, small pieces have small lengths, so s(t) is continuous. By
lemma 2.19 on the previous page, s−1 is continuous.

A shortest path is a path so that its length equals the distance between its
end points. By reparameterisation (using theorem 2.18 on the preceding page)
we can arrange that any shortest path x : [a, b]→ X has d(x(s), x(t)) = |s− t|.

The punctured plane R2 − {(0, 0)} has no shortest path between (1, 0)
and (−1, 0), but has paths of lengths as close to 2 as we like.

A geodesic is a locally shortest path, i.e. a path x : I → X, where I ⊂ R
is an interval of positive length, so that for any t ∈ I, there is some compact
subinterval J ⊂ I containing an open subset about t in I, so that the piece x|J
is a shortest path.

The punctured plane R2 − {(0, 0)} has no geodesic between (1, 0) and
(−1, 0).

A shortest path is also called a minimal geodesic.

On a sphere around the origin, a geodesic is any path lying on the
intersection with a plane through the origin, parameterised arbitrarily.
Each geodesic on the sphere is made up of shortest pieces: any piece
that doesn’t pass through two antipodal points (i.e. opposite points).

Theorem 2.21. In a proper metric space, any two points are connected by a

rectifiable path just when they are connected by a shortest path, parameterised

by arclength.

Proof. Suppose that there is a rectifiable path from x0 to x1 of length L. By
theorem 2.18 on the previous page, we can assume that this path is parame-
terised by arclength, so has unit dilation. Let F be the space of all rectifiable
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paths x : [0, L] → X so that x(a) = x0 and x(b) = x1, of length at most L
and arclength parameterised on some interval [0, `] and then constant on the
interval [`, L]. Every rectifiable path from x0 to x1 of length at most L has
some reparameterisation inside F , so the infimum length of a path in F is the
infimum length of any rectifiable path from x0 to x1. We pointwise bound F
by noting that every curve in F stays inside the closed ball of radius L around
x0, which is a compact ball, since X is proper. Similarly F is equicontinuous,
because every curve in F moves two points s, t ∈ [0, 1] to points which are of
distance at most |s− t|. By theorem 2.3 on page 14, every sequence in F has
a convergent subsequence. Take a sequence of paths in F whose lengths ap-
proach the infimum length. After taking a subsequence, we obtain a convergent
sequence.

Length spaces

A metric space is path connected if any two points lie on a path, and rectifiably

path connected if any two points lie on a rectifiable path.

2.27 Give an example of a path connected space which is not rectifiably path
connected.

Given a rectifiably path connected metric space X with metric d, we define
a new metric d̄ on X by letting d̄(x, y) be the infimum of lengths of paths
containing x and y.

If d is the metric on the unit sphere induced from the standard Euclidean
metric, then the distance between north and south poles is 2, the distance
as travelled in the ambient Euclidean space. The distance d̄ between
north and south poles is π, because we have to travel on paths that lie
on the sphere: we can’t tunnel.

2.28 Prove that, for any metric space X with metric d, d̄ is also a metric.

A metric space X is a length space if it is rectifiably path connected and
d = d̄.

An ε-midpoint of two points x, y ∈ X in a metric space is a point z so that

d (x, z) , d (y, z) ≤ ε+ 1
2d (x, y) ,

nearly half way between x and y. A pair of points is evenly split if it has an
ε-midpoint for arbitrarily small ε > 0.

Theorem 2.22. A complete metric space is a length space just when any two

points are evenly split.
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Proof. Let X be a complete metric space in which any two points are evenly
split. Take two points x0, x1 ∈ X and some ε > 0. Pick some point x1/2 so
that

max (d (x0, zi) , d (y, zi)) ≤ ε+ 1
2d (x, y) .

The dyadic numbers are the real numbers j/2k for integer j, k. Inductively, if
we have picked xs for s = j/2k for all dyadics j = 0, 1, . . . , 2k, then for each
“neighbouring” ones s = j/2k and t = (j + 1)/2k, we pick some x(s+t)/2 to be
a ε/3k-midpoint. We use a power of 3 here to make sure that these distances
all add up. Let x(s) ..= xs on all dyadic numbers. Since the dyadics are dense,
x extends uniquely to a continuous map on [0, 1], arbitrarily close in length to
d (x0, x1).

2.29 Suppose that X is a metric space with metric d and length metric d̄.
Prove that every open sets of d is an open set of d̄. Prove that every open sets
of d̄ is an open set of d just when, for each point x0 of X and number ε > 0, x0
lies in a d-open set U so that every point of U is on a path from x0 of length
at most ε.

Take a map f : X → Y of metric spaces. An open set UY ⊂ Y is evenly

covered if f−1U is a union of disjoint open sets

f−1UY =
⋃
a

Ua

called sheets, so that each map

f |Ua
: Ua → UY

is an isometry. A metric space covering map f : X → Y is a continuous map of
metric spaces so that every point of Y lies in an evenly covered open set.

2.30 Suppose that f : X → Y is a metric space covering map. Take a con-
tinuous path y : [0, 1] → Y and a point x0 ∈ X so that y(0) = f(x0). Prove
that there is a unique continuous path x : [0, 1]→ X so that y(t) = f(x(t)) for
0 ≤ t ≤ 1. Prove that the path y is rectifiable just when the path x is.

2.31 Suppose that f : X → Y is a metric space covering map of length spaces.
Prove that X is a complete metric space if and only if Y is a complete metric
space.

The Hopf–Rinow theorem

Theorem 2.23 (Hopf–Rinow I). For a locally compact length space X, the

following are equivalent properties:

a. The metric space X is proper.

b. The metric space X is complete.
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c. Every geodesic x : [a, b)→ X extends uniquely to a geodesic x : [a, b]→ X.

d. There is a point x0 ∈ X so that every shortest path x : [a, b) → X with

x(a) = x0 extends uniquely to a shortest path x : [a, b]→ X.

Proof. Proper implies complete because any Cauchy sequence is bounded, so
lies in a ball, which is compact. Complete implies the extension property of
geodesics: parameterise by arclength and take a sequence a ≤ t1, t2, · · · → b,
and then let x(b) be the limit of a convergent subsequence of x (t1) , x (t2) , . . ..
If we replace t1, t2, . . . by a sequence s1, s2, . . ., then

d (x (si) , x (tj)) ≤ |tj − si| → 0

so x extends to be continuous. Clearly if all geodesics extend, then all shortest
paths through some point extend. By theorem 2.21 on page 28, if X is proper
then any two points are connected by a shortest path.

Let r : X → R be the radius of compactness, which we suppose to be finite.
Take a point x0 so that every shortest path x : [a, b) → X with x(a) = x0
extends uniquely to a continuous path x : [a, b]→ X. Let r0 = r (x0). Take a
sequence x1, x2, . . . in B̄0 = B̄r0x0. We want to find a convergent subsquence.
This will then prove that B̄0 is compact. If x1, x2, . . . stays inside a closed ball
of radius smaller than r0 about x0, that closed ball is compact, so there is a
convergent subsequence. So we can assume that d (x0, xj)→ r0.

Take shortest paths p1, p2, . . ., each defined on some interval, and extend
them to be constant away from that interval, so all defined on intervals [0, r0].
Let ri = d (x0, xj). From these p1, p2, . . ., we can pick a subsequence convergent
on [0, r1]. From this subsequence, we can pick a further subsequence convergent
on [0, r2], and so on. Picking one element from each of these subsequences,
we obtain convergence on [0, r) to a shortest path. Therefore this extends
continuously to a path p : [0, r] → X, with p(0) = x0 and p(r) a limit of a
subsequence of x1, x2, . . .. So B̄0 is compact. The compactness radius function
is continuous, so has a minimum, say ρ > 0, on B̄0. Take an infinite sequence
of points x1, x2, . . . in the closed ball B̄1 = B̄r+ρ/2x0. Each point x1, x2, . . . lies
within ρ/2 of a point of B̄0, say y1, y2, . . .. Replace x1, x2, . . . by a subsequence
to arrange that y1, y2, . . . converges, say to y. So these x1, x2, . . . eventually stay
within a ball of radius 2ρ/3 from y, and so have a convergent subsequence. So
every infinite sequence in the ball B̄1 has a convergent subsequence, i.e. B̄1 is
compact. But B̄0 is the largest radius compact ball around x0, a contradiction.

Let X be an open ball in R3 with the metric induced from the Euclidean
metric. Clearly X is convex, so any two points of X are connected by a
unique shortest path: a line segment. Moreover, X is locally compact
length space. Nonetheless, the metric space X is not complete: a Cauchy
sequence of points of X approaching the boundary will not converge. It
is also not proper: large balls in X are not compact. Geodesics heading
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out toward the boundary are only defined on open intervals, and can
not be extended to closed intervals.

Quotients

Suppose that X is a metric space and A ⊂ X is a closed subset. Take an
abstract symbol a, which does not represent any point of X. The quotient

space, X/A ..= X\A ∪ { a }, i.e. cut out A and replace A by { a }. Define a
metric on X/A to be equal to the metric of X on X\A, but to be equal to

d(x, a) = inf
b∈A

d(x, b),

for x ∈ X\A. The quotient map q : X → X/A is q(x) = x for x ∈ X\A and
q(b) = a for b ∈ A.

Lemma 2.24. If X is a metric space and A ⊂ X is a subset, then the quotient

X/A is a metric space just when A is closed, in which case the quotient map

decreases or preserves distances.

Proof. Let Y ..= X/A. If Y is a metric space, then points of Y are closed, and
so { a } is closed, so A = q−1 { a } is closed.

Clearly the quantity d(x, y) on points x, y ∈ Y is not negative, and d(x, y) =
d(y, x). The triangle inequality is clear.

We need to prove that d(x, y) = 0 only when x = y. This is clear if x, y
are both not equal to a. Suppose that A is closed. So we need to prove that
d(x, a) > 0 for x not in A, i.e. that d(x, b) has a positive infimum for b ∈ A.
If not, then there are points of A as close as we like to x, and A is closed, so
x ∈ A, a contradiction.

More generally, suppose that X is a metric space and that f : X → Y is a
surjective map to a set Y . The stalks of the map are the sets Xy

..= f−1 { y }
for y ∈ Y . Define the formal expression (which might not be a metric)

d(y1, y2) = inf
x1∈Xy1 ,x2∈Xy2

d (x1, x2) .

Theorem 2.25. Suppose that f : X → Y is a surjective map and X bears a

metric.

The formal expression above defines a metric on Y just when both (1) every

stalk is closed and (2) any two stalks are at positive distance apart. Call this

metric the quotient metric. In the quotient metric, f is distance nonincreasing,

i.e. of dilation at most 1.

Conversely, if there is some metric dY on Y for which f is distance nonin-

creasing, then every stalk is closed and any two have positive distance, and so

the quotient metric is defined and is ≥ dY .
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Corollary 2.26. If f : X → Y is any surjective map and X bears a metric

so that the stalks of the map are compact, then Y bears the quotient metric.

Proof. If d(y1, y2) = 0 then the stalks are not at positive distance, i.e. two
different stalks contain points arbitrarily close. By compactness, there is a
subsequence converging to points x1, x2 with zero distance, i.e. x1 and x2 are
in the same stalk, so y1 = y2.

2.32 Prove theorem 2.25 on the facing page.

2.33 Prove that if X is a compact metric space and f : X → Y is a surjective
map then Y is compact in the quotient metric.

2.34 Give an example of two locally compact metric spaces X,Y and a con-
tinuous bijection f : X → Y so that f−1 is discontinuous everywhere.

Another language we use to talk about surjective maps f : X → Y is the
language of equivalence relations. We can say that two points ofX are equivalent
if they have the same value under f . On the other hand, given an equivalence
relation ∼ on X, the quotient X/∼ is the set of all equivalence classes. The
quotient map X → X/∼ sends each point x ∈ X to its equivalence class [x].
Write X/∼ as Y and the quotient map as f (to avoid the intimidating notation).
The quotient metric by an equivalence relation is the quotient metric via the
quotient map. It is just a change of notation and language, but we get just
the same quotient spaces if we think about surjective maps f : X → Y or
equivalence relations ∼ on a topological space X.

Take an annulus { (x, y) | 1 ≤ x2 + y2 ≤ 22 } and declare the two bound-
ary points (cos θ, sin θ) and (2 cos(−θ), 2 sin(−θ)) to be equivalent, for
every real number θ. (Any other two distinct points are then declared
to be inequivalent, usually without saying so.) The quotient space is the
Klein bottle.

Let X be the unit sphere X = Sn ⊂ Rn+1. Declare antipodal points x
and −x to be equivalent; the quotient is real projective space, denoted
RPn. We can also think of real projective space more algebraically: each
line through the origin strikes the sphere Sn at precisely two points,
antipodal to one another. Hence real projective space is the set of all
lines through the origin in a vector space Rn+1. The quotient metric on
it is locally isometric to the sphere; it is the Fubini–Study metric.

Take a complex vector space Cn+1. As a real vector space Cn+1 = R2n+2

has a real projective space. Declare two points of the associated real
projective space RP2n+1 to be equivalent if they represent real lines
which lie inside the same complex line through the origin. The quotient
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is complex projective space, denoted CPn. The stalks of RP2n+1 → CPn
are circles, consisting of the real lines lying in a single complex line. The
quotient metric is also called the Fubini–Study metric.

We leave the reader to generalise the previous example to define the
quaternionic projective space, denoted HPn.



Hints

1.2. Take a set consisting of 4 points X = { a, b0, b1, c }. Set d(a, c) = 2), and all
other distances between distinct points set to 1. Then d(a, bi)+d(bi, c) = d(a, c).
So if X arises as a subspace of Rn, then b0 and b1 both bisect the line segment
ac, so must be equal, so X has only three points, a contradiction. This same
example applies in any Hilbert space instead of Rn.

1.7. Let X be the set of points 1/2, 1/3, · · · ∈ R with induced metric.

1.25. Any infinite set with standard discrete metric: balls of radius 2 are not
compact, because the open cover by balls of radius 1/2 has no finite subcover,
so not all balls are compact. But the closed balls of radius 1/2 are compact,
each being just a single point.

1.28.

1.29. Immediate from r(y) + d(x, y) ≥ r(x): if r(x) is infinite then so is r(y).

1.30. In problem 1.28 on page 8 we saw that r(y) + d(x, y) ≥ r(x), and by
symmetry r(x) + d(x, y) ≥ r(y). Therefore d(x, y) ≥ |r(x)− r(y)|, so that if we
make y → x, we find r(y)→ r(x).

1.31. If the compactness radius is somewhere infinite, the space is proper, so
its balls of positive integer radius are compact, and it is the union of these. So
assume that the compactness radius is everywhere finite. By local compactness,
the compactness radius is everywhere positive and d(x, y) ≥ |r(x) − r(y)|, so
the compactness radius is continuous. Taking any compact set K ⊂ X, let
K ′ be the union of all closed balls of radius r(x)/2 about points x ∈ K. Any
infinite sequence x1, x2, · · · ∈ K ′ has each xi at distance at most r(yi)/2 from
some yi ∈ K. Take a convergent subsequence of y1, y2, . . ., and replace the
original sequence with the subsequence, so y1, y2, · · · → y say. Then d(xi, yi) ≤
r(yi)/2 → r(y)/2. Far enough down the sequence x1, x2, . . ., every xi lies in
the compact ball of radius 3r(y)/2 about y. Thus x1, x2, . . . has a convergent
subsequence.

2.8.

35



36 Hints

2.19. Given two maps f, g : S1 → S1 of the circle, with equal degree, let
ft = Ftf and gt = Ftg. Then

f̂t(θ)− ĝt(θ) = (1− t)
(
f̂(θ)− ĝ(θ)

)
+ t

2π

∫ 2π

0
f̂ − ĝ.

Therefore
d (ft, gt) ≤ (1− t)d (f, g) .

2.21. Differentiate:
∂

∂t
ft(x) = X(ft(x)),

and applied to t = t1 + t2,

∂

∂t2
ft1+t2(x) = X(ft1+t2(x)),

and replacing x by ft1(x),

∂

∂t2
ft2(ft1(x)) = X(ft1(ft2(x))).

So for any fixed t1, ft2(ft1(x)) is a flow line of X through ft1(x), but so is
ft1+t2(x), and both start, when t2 = 0, at the point ft1(x). By uniqueness of
the flow (theorem 2.13 on page 24), they are equal: ft1+t2(x) = ft1+t2(x).
2.22.

ft(x+h)−ft(x)−h−
(∫ t

0
X ′(fs(x))ds

)
h =

∫ t

0
(X(fs(x+h))−X(fs(x))−X ′(fs(x))h)ds,

is uniformly bounded by some expression o(h).
2.23. A flow in our sense above, given by flow lines, is also a flow in the sense
of Picard’s theorem. But suppose that there are two flows in the sense of
Picard’s theorem, say F (t, x) and G(t, x). Note that G0(x) = x. Consider the
map H(t, x) ..= G(−t, F (t, x)). We need to prove that H(t, x) = x for all t, x.
Differentiate:

∂

∂t
H(t, x) = −∂G

∂t
(−t, F (t, x)) + ∂G

∂x
(−t, F (t, x))∂F

∂t
(t, x),
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and plug in t = 0 to get

∂

∂t

∣∣∣∣
t=0

H(t, x) = −X(x) +X(x) = 0.

So H(t, x) = x+O(t)2. Let Ht(x) ..= H(t, x). For any integer N ≥ 1:

Ht(x) = H◦Nt/N (x) = x+O(t/N)2 + · · ·+O(t/N)2 = x+ O(t)2

N
→ x

as N →∞, but the left hand side is independent of N .
2.27. Take the graph of a continuous function y = f(x) which is not rectifiable.

2.31. Suppose that Y is complete. Take a Cauchy sequence x1, x2, . . . in X. Let
yi := f(xi). Because f is a local isometry, applied to nearby points, f preserves
lengths of paths, so preserves distances. So y1, y2, . . . is a Cauchy sequence, so
converges, say to some y ∈ Y . Pick an evenly covered open set Uy ⊂ Y around
y. Take the point xa inside each open set Ua ⊂ X covering U . The set Uy
contains a ball, say of radius r, around y. The preimage of this ball inside each
set Ua contains a ball Ba of radius r around xa. Let B′a ⊂ Ba be the ball of
half the radius. The points yi = f(xi) converge to y, so the points xi must get
close to some choice of point xa for large i. If infinitely many of the points xi lie
inside different balls B′a, then those infinitely many points are all of distance at
least r/2 apart, not in a Cauchy sequence. So all but finitely many of the points
xi lie inside the same ball B′a. The map f restricts to that ball to identify it
with a ball around y, and yi = f(xi)→ y so xi = f−1

a (yi)→ x = f−1(y).
Suppose that X is complete. Take a Cauchy sequence y1, y2, . . . on Y . Pick

some numbers ε1, ε2, · · · ≥ 0 with ε1 + ε2 + . . . finite. Pick some i1 so that, for
any j, k > i1, d(yj , yk) < ε1, and similarly i2 and so on. Replace the sequence
y1, y2, . . . with yi1 , yi2 , . . .. We need only prove that this sequence converges.
Take a sequence of paths from yi to yi+1, of lengths shrinking to zero, so that
the lengths have finite sum. Lift each of these paths up to paths in X, starting
from some point x1 that maps to y1, and successively lifting paths. Join these
paths together into one path y(t), and lift it to M , i.e. to a path x(t) so
that f(x(t)) = y(t). Then there are various times ti at which y(ti) = yi. Let
xi := x(ti). Since the length of x(t) between ti and ti+1 is the same as the
length of y(t) between those times, the points xi and xj+1 are of distance at
most εi+ · · ·+εj apart. So x1, x2, . . . is a Cauchy sequence, converging to some
point x ∈M . Let y = f(x) and then yi → y.
2.34. Let Y be any connected metric space containing more than one point.
Let X be Y as a set of points, but with the standard discrete metric. Let
f : X → Y be the obvious map f(x) = x for all x ∈ X = Y . For each point
x ∈ X, no open set around x ∈ Y maps under f−1 into the open set {x }
around x. So f−1 is nowhere continuous.
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Lipschitz, 16
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section, 20
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metric space, 8
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space, 32, 33
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rectifiable, 25
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metric space, 29
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compact
pointwise, 14
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arc length, 27
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local, 20

set
closed
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